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We present a stochastic cluster algorithm that drastically reduces critical 
slowing down for Z 2 lattice gauge theory in three dimensions. The dynamical 
exponent z is reduced from z > 2 (standard Metropolis algorithm) to z~0.73. 
The Monte Carlo pseudodynamics acts on the gauge-invariant flux tubes that 
are known to be the relevant large-scale low-energy excitations. A comparison 
of our results with known results for the 3D Ising model and ~b 4 model supports 
the conjecture of universality classes for stochastic cluster algorithms. 
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1. B A C K G R O U N D  

Monte Carlo (MC) simulations are an important tool in statistical 
mechanics and field theory. They provide the possibility to verify analytical 
calculations, give hints on how to solve models, and provide the only 
reliable quantitative estimates for many models. 

A major drawback of the Metropolis algorithm (1) and its variants (the 
most widely used MC simulation methods) is that they become highly 
inefficient near critical points. When a second-order phase transition is 
approached the correlation length diverges. This signals the appearance of 
large-scale low-energy excitations in the system which dominate the 
dynamics of the simulation. The Metropolis algorithm being local in nature 
does not handle these large-scale excitations efficiently; the autocorrelation 
time r of the system (the number of Metropolis sweeps required to generate 
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statistically independent configurations) diverges with the correlation 
length ~. This phenomenon is known as critical slowing down (CSD). 

The manner in which the autocorrelation time ~ diverges with the 
correlation length ~ is expressed in terms of the dynamic critical exponent 
z. As one approaches the critical point, ~ diverges as 

~ ~ ~  (1) 

In order to determine z one can perform simulations near the critical point 
to measure both r and 4, and then use Eq. (1) to calculate z. When using 
this method one should choose the linear size of the lattice L such that the 
relation ~ ~ L is satisfied, z can also be determined by means of simulations 
a t  criticality. In this case r diverges as 

~ L z (2) 

with the linear size of the system. 
For  many models (e.g., the ~b 4 theory) the dynamic critical exponent of 

local algorithms, like the Metropolis algorithm, is around z ,~ 2 (see, e.g., 
ref. 2). Therefore a method that has a considerably smaller exponent can 
save orders of magnitude in computer time. Using such a method, one will 
be able to perform high-precision simulations that cannot be done with 
standard MC techniques. 

It is obvious that a global update algorithm (3 6) is needed in order to 
achieve a considerable reduction of the dynamic exponent z. However, 
trying to suggest global changes on geometrical sublattices usually leads to 
very low acceptance rates on one hand, and suggesting blocks based on the 
current configuration breaks detailed balance on the other. A new class of 
updating methods for Monte Carlo simulations has been developed over 
the past few years as an elegant and efficient way out of this dilemmaJ v 19) 
By means of s t o c h a s t i c  b l o c k i n g ,  these algorithms manage to select clusters 
of variables that are updated in a homogeneous way without violating 
detailed balance. By an appropriate choice of the blocking criterion, 
the stochastic cluster methods succeed in drastically reducing CSD for 
several classes of models: the Ising model in two, three, and four 
dimensions,(n 14.19) the X Y  model in two dimensions, the 0(3)  model, (iv) 
the ~b 4 model, (15) etc. Until now it was not clear how these powerful ideas 
could be applied to the important class of models with gauge symmetries. 
In this work we present the first successful implementation for such a 
model: Z2 lattice gauge theory in three dimensions. It has been shown that, 
using the stochastic blocking in a multigrid framework, one can, in the case 
of Ising models in two and three dimensions, eliminate CSD completely 
(z = 0 ___ 0.1 for the two-dimensional Ising model). ~12-14'19) An adaptation of 
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the stochastic cluster algorithm for Z 2 lattice gauge theory to the multigrid 
framework could possibly lead to a similar result for this model. 

The Z2 lattice gauge theory can be defined in the following way. Let 
A be a three-dimensional cubic lattice of size L 3. The dynamic variables of 
the theory can only take the values + 1 or - 1 and are located on the links 
of the lattice. The energy of a configuration is defined as the sum of the 
energies of the individual plaquettes p: 

= Z E(pl (31 
P 

The energy of a plaquette p is 

- E ( p )  = S152S334 (4) 

where Si, i =  l, 2, 3, 4, are the variables which are located on the links of 
plaquette p. It can easily be seen that all configurations consist of sets of 
closed loops of frustrated plaquettes embedded in a medium of satisfied 
plaquettes (see Section 2.1). In fact this is a consequence of the discretized 
version of Gauss' law, which implies conservation of electric flux in the 
absence of sources, The specification of flux tubes (the closed loops of 
frustrated plaquettes) completely determines the configuration modulo 
gauge transformations. This property is heavily used in our work; our MC 
procedure consists in updating the large geometry of the flux tubes, rather 
than the microscopic elementary variables defined on the links. 

It is a well-known fact that Z 2 lattice gauge theory is dual to the Ising 
model in three dimensions; their partition functions are equal. Both models 
have been investigated extensively by means of MC simulations, and the 
most accurate data were obtained for the Ising model. The critical tem- 
perature of the Ising model, and by duality that of the gauge theory, were 
determined to four significant digits, and good estimates for the critical 
exponents were obtained as well. We want to stress that this duality does 
not imply a configuration-to-configuration correspondence between the 
models. Therefore, the equivalence between the models cannot be used to 
translate the successful stochastic cluster algorithm for the Ising model into 
a stochastic cluster algorithm for Z2 lattice gauge theory. 

2. THE M E T H O D  

2.1. In t roductory  Remarks 

Before we embark on a detailed description of the method and a proof 
of its validity, it is useful to emphasize some general aspects. The method 
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presented here is explicitly gauge invariant, i.e., the variables that enter the 
arguments and are updated are the plaquette values and not the link 
variables. This is analogous to working with the field strength F~,v instead 
of the vector potential A,  in the continuum theory. However, the fact that 
the underlying model is a gauge model imposes a condition on the 
plaquette variables that must be satisfied at all t imes--the number of 
frustrated plaquettes on an elementary cube must be even. This constraint 
is analogous to the Bianchi identity dF= 0 in the continuum; hence we will 
refer to it as BI. From BI it follows that every plaquette configuration con- 
sists of closed strings of frustrated plaquettes. In order to make these con- 
siderations more transparent, let us introduce the dual lattice. Each point 
of the dual lattice corresponds to an elementary cube of the original one 
and each dual link corresponds to a plaquette of the original lattice. The 
value assigned to a dual link is equal to the value - E ( p )  of the corre- 
sponding plaquette p, i.e., - 1  if the plaquette is frustrated and + 1 
otherwise. In this way each configuration of the dual lattice corresponds to 
a single configuration of the original lattice modulo gauge transformations. 
The BI constraint can be expressed as a constraint on the links of the dual 
lattice in the following way: The number of frustrated links attached to a 
point of the dual lattice must be even, that is, the configurations on the 
dual lattice consist of closed loops of frustrated links. Configurations, on 
both the original and the dual lattices, that satisfy the BI constraint will be 
called valid. It is important to notice that this duality is not equivalent to 
the duality between the partition functions of the Ising model and Z2 
lattice gauge theory in three dimensions; as pointed out above, the latter 
duality cannot be expressed as a duality between configurations. 

2,2. The A lgor i thm 

The algorithm presented in this work is a legitimate MC method in the 
sense that it generates a Markov chain of configurations that is ergodic, 
and each configuration appears with a probability which is proportional 
to the Boltzmann factor e P~. Given an old configuration Cn, we will 
describe the stochastic rules for choosing the next configuration in the 
Markov chain-- the new configuration Cn +1. 

The first part of our procedure consists in freezing or deleting all the 
terms of the Hamiltonian J r ,  i.e., the elementary plaquettes of the lattice. 
During this part, each plaquette is visited once and a stochastic decision is 
made to either freeze or delete it, with probabilities that depend on its 
energy in the old configuration Cn. The plaquette p is deleted with 
probability 

pa(p)=e~E ~+E~p)l (5) 



Lattice Gauge Simulations 129 

and frozen with probability 

Pf(p)  -- 1 - Pd(P) (6) 

where E(p) stands for the energy of the plaquette p in Cn. From this choice 
of probabilities it follows that a plaquette that was frustrated in Cn is 
always deleted. On the other hand, a plaquette that was satisfied is some- 
times frozen and sometimes deleted, with probabilities depending on the 
inverse temperature ft. This part of the algorithm is analogous to putting 
virtual bonds in the original cluster algorithm developed for the Ising 
model. ~ 1 ~ 

The second part of the algorithm consists in choosing a new valid 
plaquette configuration Cn+i. After all plaquettes have been either frozen 
or deleted in the first part we can partition the set of valid plaquette 
configurations into two subsets A and B. 

A: Those valid plaquette configurations that differ from the old 
configuration Cn only in values of deleted plaquettes. In terms of 
plaquette values A is the set of valid configurations in which 
-E(p) = +1 for all frozen plaquettes. 

B: Valid configurations that differ from Cn in values of one or more 
frozen plaquettes. 

Our algorithm picks a random configuration Cn +1 from subset A such that 
all configurations in A have the same probability to be chosen. In the next 
subsection we explain how this is accomplished in practice. This second 
part of the algorithm concludes one MC update of the lattice. If more 
updates are needed, one should repeat the whole procedure with Cn+l as 
the old configuration and so on. 

The fact that our algorithm maintains detailed balance follows directly 
from the proof in refs. 12-14. In our case the terms in the Hamiltonian that 
are frozen or deleted are the plaquette energies. Our procedure is clearly 
ergodic, since every valid plaquette configuration can be reached in one 
sweep from any other valid configuration. The only thing we still have to 
proove is that the second part of the algorithm indeed picks a random 
configuration from the set A. 

2.3. The R a n d o m  Choice  of a N e w  P laquet te  C o n f i g u r a t i o n  

In this subsection we describe how a valid plaquette configuration 
Cn+t is picked at random from A, the subset of all valid plaquette con- 
figurations that differ from Cn only in values of plaquettes that were deleted 
in the first part of the procedure. 
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We find it convenient to describe this part  of the algorithm in terms 
of the dual problem. The links dual to the deleted plaquettes together with 
their endpoints, corresponding to elementary cubes of the original lattice, 
form a graph that we call the graph of deletions. To go from the configura- 
tion Cn to a new configuration Cn +1, both in the set A, we have to choose 
new values for the dual links on this graph. In general, the graph of dele- 
tions consists of several disconnected parts that can be treated separately. 
Each disconnected part  is made up of a number of loops and some dangling 
ends; links may be part  of more than one of these loops. A proper choice 
of Cn + 1 is obtained by assigning to each of the loops a random value ( -  1 
or +1).  The dual links are then assigned new values according to the 
following rules. Those links that are part  of a dangling end are assigned a 
value of + 1. The rest of the dual links are part of loops. For  each of these 
links we calculate the product of _+ 1 values of all the loops it is p a r t  of. 
The value of the product is assigned to the link. 

In order to make the identification and manipulation of loops 
manageable and to turn these ideas into a practical algorithm, we were led 
to introduce some additional concepts. For  each disconnected part of the 
graph of deletions we construct a spanning tree--a subgraph of deletions 
which connects all nodes of this connected part, but does not contain any 
closed loops. We will prove that the dual links of the graph of deletions 

Fig. 1. 
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A graph of deletions and its spanning tree. Links of the spanning tree are denoted by 
solid lines and free links by dashed lines. 
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that do not belong to the spanning tree may always be given arbitrary 
independent values without violating the BI constraint; for this reason they 
will be called free links. Moreover, we will show that, once all free links 
have been assigned a random value, the values of the links of the spanning 
tree are uniquely determined by BI. 

In practice we proceed in the following way. For  each disconnected 
part of the graph of deletions we build a spanning tree (see Fig. 1), and an 
arbitrary node of this tree is selected to be its root. The level of a node of 
the spanning tree is now defined as the number of links of the tree that 
make up the connection along the tree between its root and this node. As 
a consequence, a link of the spanning tree always connects two nodes that 
are one level apart  and because spanning trees do not contain closed loops 
there is never more than one link of the tree directly connecting a par- 
ticular node to nodes of the next lower level. Now the free links of this dis- 
connected part  of the graph of deletions are assigned independent random 
values: + 1 or - 1 (see Fig. 2). By applying the BI constraint at the nodes 
of the highest level, we see that at each of these nodes the link connecting 
this node to a node of the next lower level is forced to have a particular 
value (see Fig. 3). Now we can apply BI at the nodes of the next lower 
level, and it is clear that the links connecting these nodes to nodes of a 
lower level are forced by BI to take a definite value: + 1 or - 1. This proce- 
dure can be continued down to the nodes of level 1, and in this way all 
links of the dual lattice are assigned a value (see Fig. 4). Contradictions 
and ambiguities cannot arise, because applying BI at a node of the tree at 
level 1 or higher always forces one and only one link. By this construction 
BI is guaranteed to hold at all nodes of the dual lattice except possibly at 
the root of the spanning tree. We now show that BI holds at the root as 

Fig. 2. 
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Assignment of random values + 1 or - 1 to the free links. 
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Fig. 3. 
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Free links of the highest level are assigned the values +1 or -1  using the BI 
constraint. 

well. Let us call the part of the spanning tree that connects a node to nodes 
of higher levels without passing through nodes of lower levels the subtree 
of this node. We can then define the frustration number of a node as the 
number of times the subtree of that node is touched by frustrated free links. 
The procedure we presented above forces each link of the tree to take the 
value ( - 1 ) " ,  where n is the frustration number of the highest level 
endpoint of the link. At the root, k links belonging to the graph of dele- 
tions meet. A number l out of these k links are part of the spanning tree, 
while the k - l remaining ones are free links, m of which are frustrated. The 
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Fig. 4. A possible assignment of all the links on the graph of deletions. 
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product of values of all the links meeting at the root can now be written 
a s  

( - -1 )n l ( - -1 )n2 ' ' ' ( - -1 )n l ( - -1 )m=(- -1)  (nl+n2+'''+nl--m) (7) 

where n 1 -.. nt are the frustration numbers of the 1 nodes of level 1. From 
the fact that each frustrated free link touches the spanning tree in two 
nodes, we obtain 

( _  1)(~1 +,,2 + ... +n,+, , , )  = (__ 1 )2,,j (8) 

where nl is the number of frustrated free links. Consequently, the product 
of values of all the links meeting at the root of the spanning tree is equal 
to + 1. Therefore BI is satisfied at the root as well, and our method 
produces only valid configurations that belong to the set A. Moreover, our 
proof shows that each configuration in A is uniquely determined by the 
values of the free links, and hence is produced by our algorithm. 

Since any configuration of the free links is generated by our procedure, 
and all these configurations are produced with the same probability, we 
conclude that in the second part of our algorithm we generate a random 
configuration from the set A. 

2.4. Summary and Final Remarks 

Let us summarize the major steps in a single MC update of the lattice: 

1. Each plaquette is either frozen or deleted in a stochastic manner 
that depends only on the energy of the plaquette in the present 
configuration. 

2. The graph of deletions is constructed on the dual lattice and the 
values of the rest of the links, corresponding to frozen plaquettes, 
are set to + 1. 

3. For  each disconnected part of the graph of deletions a spanning 
tree is constructed and a root is selected. 

4. Free links are given random values. 

5. New values of the rest of the links are determined using BI 
repeatedly. 

This concludes our detailed description of the stochastic cluster algo- 
rithm for the MC simulations of Z2 lattice gauge theory. We proved that 
it is a legal updating procedure, i.e., it is ergodic and it generates configura- 
tions with the correct probability distribution. Before we discuss numerical 
tests of the method (see next section), two remarks are in order. First, it 
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is important to notice that a spanning tree can be constructed in a number 
of operations which is proportional to the volume of the system. Therefore, 
the amount of computer time needed to perform a single sweep of our MC 
algorithm grows linearly with the volume. 

The second remark concerns generalizations of the correspondence 
between gauge models and tube dynamics. One can consider a 
D-dimensional square lattice with a Z2 variable defined on each 
d-dimensional element of this lattice ( d=  0 ~ points --+ Ising models, 
d =  1 ~ links ~ gauge theories, etc.). One defines the energy of each con- 
figuration as the sum of energies of all the ( d+  1)-dimensional elements of 
the lattice. The energy of each (d+  1)-dimensional element is defined as a 
product of values of the d-dimensional elements forming its boundary. The 
dual construction described above creates closed, extended objects of 
dimensionality D - d - 1  on the dual lattice. In particular, for d =  D -  3 
one obtains the Euclidean partition function of a discretized system of 
strings. For d =  D - 4  one obtains membranes. The case D = 3, d =  0 was 
first observed by Polyakov. (2~ 

3. S I M U L A T I O N S  

In order to determine the properties of the stochastic cluster algo- 
rithm, we performed several long runs with our carefully tested program on 
CRAYX-MP/48 and CRAYY-MP/832 computers. We used finite-size 
scaling [see Eq. (2)] to determine the dynamic critical exponent z. In order 
to do this, we carried out all our simulations at the critical coupling of the 
infinite system, /3cr=0.7614. This value was obtained from the duality 
relation 

/~z~ g~ugr - �89 ln[tanh(/~,si,g)] (9) 

using the critical coupling of the Ising model /?ising=0.221654/21~ The 
number of MC sweeps for the different lattice sizes were 400,000 
(83 lattice), 100,000 (163), 40,000 (323), and 10,000 (643). From our data 
we calculated the time-delayed energy-energy correlation function 

(E(0) E(t)) - (E> 2 
C~(t)- ( E 2 > _  (E>2 (I0) 

where E(t) is the energy per unit volume at time step t. Errors in the 
autocorrelation function and autocorrelation time v were calculated by 
dividing our data into independent bins. We determined autocorrelation 
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times by fitting the long-time behavior of CL-(t) to a simple exponential 
decay 

C E ( t )  = A e  -~/~ (11) 

Our results for ~ are presented in Fig. 5 as a function of the linear size of 
the lattice L. Using Eq. (2), we calculated the dynamic critical exponent 
and found z = 0.73 + 0.06. 

In order to compare the new method with the local Metropolis algo- 
rithm, we performed runs with a fully vectorized program on four different 
lattice sizes: 83, 123, 163, and 243. For  this algorithm we determined z 
not only from the energy autocorrelation function, but also from the 
Polyakov-loop autocorrelation function. The data are shown in Fig. 6. Our  
best estimate for z from both correlation functions is z = 2.5 _+ 0.3. This is 
larger than the value 2 that is naively expected for local MC algorithms 
and also larger than 2.03, the value obtained by Metropolis for the Ising 
model in three dimensions. {22) Due to critical slowing down, we needed 
about  7 x 10 6 Metropolis sweeps on the 243 lattice to determine ~ with 
10 % error. It is clear that much more computer time would be required to 
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Fig. 5. Results of Monte Carlo simulation of Z 2 lattice gauge theory in three dimensions at 
the critical point. The stochastic Cluster algorithm was used. Autocorrelation times of 
plaquette energy are plotted vs. lattice size. 
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Fig. 6. Results of Monte Carlo simulation of Z 2 lattice gauge theory in three dimensions at 
the critical point. The local Metropolis update algorithm was used. Autocorrelation times for 
Polyakov loop (cubes) and for plaquette energy (diamonds) are plotted vs. lattice size. 

determine z more accurately. We want to point out that since our 
stochastic cluster algorithm is gauge invariant, the autocorrelation function 
for the Polyakov loops is always zero. 

Clearly,, stochastic cluster algorithms are more efficient than local 
algorithms for large lattices, but they are much more complicated, and 
usually require more operations per spin update. Moreover, stochastic 
cluster algorithms do not vectorize well. It is important, therefore, to deter- 
mine the size of the lattice at which our cluster algorithm becomes more 
efficient than the Metropolis method. This depends on the type of com- 
puter used. On one processor of the CRAY Y-MP, the Metropolis program 
we used updates 0.34x 106 spins per second in the scalar mode and 
4.2 x 106 in the vector mode during a simulation of a 323 lattice. The cluster 
algorithm, on the other hand, performs 0.125 x 106 spin updates per second 
in the scalar mode and 0.142 x 106 in the vector mode. The speed of the 
Metropolis algorithm can still be increased by careful use of techniques 
such as multispin coding; the fastest Metropolis program for Z 2 lattice 
gauge theory of which we are aware reaches a speed of 11 x 106 spin 
updates per second on a CDC Cyber 205 computer. (23) It is also possible 
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to increase the speed of the cluster algorithm considerably by refining and 
partially vectorizing the part of the algorithm in which the graph of 
deletions and the spanning trees are constructed. Even with these 
improvements, the number of operations per spin update will be larger in 
our cluster algorithm by more than an order of magnitude. This advantage 
of the Metropolis algorithm is not significant, since its dynamic critical 
exponent is large. In our simulations the cluster algorithm was more 
efficient than the vectorized Metropolis algorithm for L > 10. Extrapolating 
our results to L = 100, we find that for a simulation of Z2 gauge theory on 
a 1003 lattice, our algorithm would be at least 25 times more efficient in 
real computer time than the fully vectorized Metropolis algorithm. 

4. D I S C U S S I O N  A N D  C O N C L U S I O N S  

The results we presented in the previous section demonstrate that our 
stochastic cluster algorithm is superior to the traditional Metropolis algo- 
rithm as soon as the correlation length exceeds the value ~ ~ 10. The physi- 
cal reason for the high efficiency of the cluster algorithm lies in the fact that 
it performs large-scale moves. It is well known that the creation and 
destruction of closed strings of frustrated plaquettes (closed loops of 
frustrated links on the dual lattice) play an important role in the 
pseudodynamics of the simulation of Z 2 lattice gauge theory near criti- 
cality. A very large number of Metropolis sweeps is required to generate or 
destroy a large, closed string of frustrated plaquettes because of the local 
nature of the algorithm. On the contrary, in our algorithm all frustrated 
plaquettes are deleted and consequently the probability to destroy such a 
closed string is large. Since our algorithm satisfies detailed balance the 
probability to create such strings is also large. 

Successful stochastic cluster algorithms have also been developed for 
the Ising and the ~4 theory in three dimensions, (1~'15~ both models are in 
the same universality class with Z 2 lattice gauge theory. It is striking that 
in all of these cases the dynamic critical exponent is reduced to the same 
value within error bars. This strongly supports the conjecture of dynamic 
universality in stochastic cluster algorithms. Recently the stochastic multi- 
grid Monte Carlo method that was known to reduce z for the Ising model 
in two dimensions was successfully applied to this model in three dimen- 
sions as well; CSD was completely eliminated ( z = 0  within error bars) 
using a W-cycle with rescaling factor b = 2. We therefore expect that a 
multigrid version of our algorithm will eliminate CSD completely for Z2 
lattice gauge theory. 

The principles that guided us in developing our method seem to form 
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the basis for other stochastic cluster algorithms as well. First of all, physical 
understanding of the pseudodynamics of simulations near criticality is 
essential, i.e., the large-scale, low-energy excitations whose creation and 
destruction dominate the pseudodynamics must be identified. The first step 
of the stochastic cluster algorithm is a freeze~delete decision for all or part 
of the terms of the (possibly reformulated) Hamiltonian. The second step 
consists in the identification of the set of configurations of the system that 
do not violate the constraints imposed by frozen interactions. In the last 
step the new configuration is chosen from this set either at random, when 
all terms in the Hamiltonian are subjected to the freeze/delete decision, or 
according to the probability distribution governed by the remaining terms 
in the Hamiltonian. The success or failure of this method hinges fully on 
the choice of the terms in the Hamiltonian that are subjected to the 
freeze/delete decision. A successful choice is such that the constraints 
imposed by the frozen terms do not prevent the large-scale low-energy 
excitations that dominate the pseudodynamics of the simulation from being 
destroyed and created with a large probability. 

The development of the Z 2 cluster algorithm is part of a continuing 
effort to apply stochastic cluster methods and multigrid ideas to a wide 
range of statistical models. We believe it is a step forward in the develop- 
ment of powerful global updating schemes for more realistic lattice gauge 
theories. In this context it may be useful to concentrate on Z2 subgroups 
or to attempt the creation and annihilation of flux tubes. Work is in 
progress on the development of multigrid versions for Z2 lattice gauge 
theories and the ~b 4 model in order to reduce the dynamic critical exponent 
even further. 

The existence of a gauge-invariant multiscale algorithm raises the hope 
that in the context of QCD it will shed light on the confining mechanisms 
which make hadrons rather than quarks the relevant degrees of freedom. 
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